

Satellite Meeting on Time-Resolved Spectroscopic Ellipsometry Prague, 22 September 2023

Ultrafast spectroscopy at ELI Beamlines: capabilities for applications in molecular, bio-medical and material science

Mateusz Rebarz

mateusz.rebarz@eli-beams.eu

The Extreme Light Infrastructure is the world's largest and most advanced high-power laser infrastructure and a global technology and innovation leader in high-power, high-intensity, and short-pulsed laser systems.

The Extreme Light Infrastructure is the world's largest and most advanced high-power laser infrastructure and a global technology and innovation leader in high-power, high-intensity, and short-pulsed laser systems.

Ultra-high power (up to 10 PW)

The Extreme Light Infrastructure is the world's largest and most advanced high-power laser infrastructure and a global technology and innovation leader in high-power, high-intensity, and short-pulsed laser systems.

Ultra-high power (up to 10 PW)

Ultra-short pulses (down to 100 as)

The Extreme Light Infrastructure is the world's largest and most advanced high-power laser infrastructure and a global technology and innovation leader in high-power, high-intensity, and short-pulsed laser systems.

Ultra-high power (up to 10 PW)

Ultra-short pulses (down to 100 as)

Ultra-broadband spectrum (THz-Gamma)

5

ELI Facilities

Czech Republic, Dolní Břežany (outskirts of Prague) (in ERIC since April 2021)

Hungary, Szeged (in ERIC since April 2021)

Romania, Magurele (outskirts of Bucharest) (in ERIC soon)

Extreme peak power: 10 PW

- Particles acceleration
- X-ray sources

Extreme pulse duration: 166 as

- Attosecond physics
- Few-cycle pulses from THz to UV

Extreme photon energy: 19 MeV

- Photonuclear physics
- Gamma sources

What is ERIC?

The European Research Infrastructure Consortium (ERIC) is a legal framework created by the European Commission to allow the operation of Research Infrastructures of Pan-European interest.

The Czech Republic, Hungary, Host of Seat Host **Construction was** possible with Lithuania Italian European Republic **Structural ESIF** Investment **Funds** Federal Republic of Bulgaria **Germany** Observer Observer

European
International
Organisation
Established
in 2021

Member countries support ELI ERIC jointly with national funding

Petawatt-class lasers worldwide

Europe leads the world in laser production and installation, especially state-of-the-art systems

- **Investment** in high-power laser systems in Europe is connected to a strong and relatively consolidated community in Laserlab Europe beginning in 2001.
- The ELI Facilities are introducing > 33 PW (3x10PW @10Hz systems)

SOURCE: Courtesy of J.L. Collier, CLF RAL, UK

ELI vs Synchrotrons

Accelerator based sources

- Reliability
- Tuneability
- ⊕ Flux
- Limited temporal resolution
- Synchronization

Laser-driven sources

- Synchronization
- Temporal resolution
- Flexibility (pump-probe)
- Limited tuneability
- Flux

High complementarity between synchrotrons and ELI infrastructure

Pump-probe experiments

Pump-probe experiments

1 fs $< \Delta t < 1$ ms

amplifier 2

ELI Beamlines

ELI Beamlines is an international user facility for fundamental and applied research using ultra-intense laser and particle beams

Research Departments

- 1. Department of Laser Systems
- 2. Department of Radiation Physics and Electron Acceleration
- 3. Department of Ion Acceleration and Applications of High Energy Particles

4. Department of Structural Dynamics

5. Department of Plasma Physics and Ultra-high Intensity Interactions

Czech Republic Dolní Břežany (on the outskirts of Prague)

www.eli-beams.eu

ELI Beamlines Lasers

ELI Beamlines

L1	L2 *	L3	L4
5 TW	100 TW	1 PW	10 PW
100 mJ	2 J	30 J	1.5 kJ
15 fs	25 fs	30 fs	150 fs
1 kHz	50 Hz	10 Hz	0.01 Hz

^{*} target in 2026

Technologies

DPSSL

Diode Pumped Solid State Laser

OPCPA:

Optical Parametric Chirped-Pulse Amplification

Laser driven X-ray sources

Focusing laser on the specific target

Plasma Source

Laser

4-30 keV

100 fs

incoherent

High Harmonics

10-250 eV (5 -120 nm)

< 20 fs

coherent

High Harmonics Generation (HHG)

High Harmonics Generation (HHG)

Measured XUV beam profile

Gas	λ _{χυν} (nm)	Estim. XUV energy (µJ)
Xenon	≥50	2
Argon	≥30	0.2
Neon	≥13	0.02
Helium	≥10	0.02

MAC chamber & AMO science

MAC: Multi-purpose chamber for AMO (Atomic, Molecular, Optical) and CDI (Coherent Diffractive Imaging) science.

Detectors: Electron and Ion Time of Flight spectrometer (in-house development) Velocity Map Imaging (VMI 75 mm MCP with a phosphor screen and ns gated imaging detector)

Samples delivery: Cluster source – for rare-gas and water clusters with sizes from few to 100 nm. Molecular source (5 KHz), aerosol injection.

Plasma X-ray Source (PXS)

Cu-tape source: ~ 8 keV X-rays

2.9e10 ph/(shot*sr) @ 1 keV bandwidth

3-30 keV Bremsstrahlung (continuum)

Complementary CW sources: Cu and Mo anodes – 108 ph/sec

X-Ray Diffraction & Spectroscopy (XRD/XAS)

Hard X-ray Diffraction

Euler cradle goniometer

simultaneously rotating the investigated sample at 360° and positioning the X-ray detector at desired angle and distance.

Detection

recording of the diffracted and scattered X-ray photons by a single photon counting hybrid pixel 3 kHz detector (Eiger X 1M, Dectris)

Hard X-ray Spectroscopy

Spectrometer

von Hamos design with gratings from 4 to 12 keV

Detection

custom designed CCD (Andor) with greater acceptance angles and beryllium window

Optical Spectroscopy Stations

UV-VIS-IR Transient Absorption: monitoring excited and transient states of molecules, atoms and materials

Stimulated Raman Spectroscopy: monitoring Raman vibrational spectra of molecules to follow structural changes with high time resolution

TR Ellipsometry: measures the polarization response of samples providing optical constants of the material in an excited states and during the time evolution of these states

Light sources

Ti:saph - fs lasers (800 nm, 20-35 fs, 1 kHz)

OPA - Optical Parametric Amplifiers (0.25-2.5 μm)

HCF - Hollow Core Fiber (5 fs, 250 - 1100 nm)

Stimulated Raman Spectroscopy

TCT station at ELI Beamlines

TCT station at ELI Beamlines

TCT station at ELI Beamlines

Femtosecond Broadband Ellipsometer

Femtosecond Broadband Ellipsometer

New J. Phys. 22 (2020) 083066

Everything about our setup:

Broadband femtosecond spectroscopic ellipsometry Rev. Sci. Instrum. 92, 033104 (2021)

Available end-stations

Optical stations

- UV-VIS-IR Transient Absorption
- Stimulated Raman Spectroscopy
- Time-Resolved Ellipsometry
- Transient Current Technique

Soft X-ray stations

- Electron and Ion Time of Flight
- Coherent Diffractive Imaging

Hard X-ray stations

- Time-Resolved X-ray Diffraction
- Time-Resolved X-ray Absorption

Others

- Laser-Plasma Electron Accelerator
- Laser-Plasma Ion Accelerator

Access to ELI Infrastructure

ELI ERIC is Open to the World

A user facility with three access modes

- Excellence-Based Access Evaluation of proposals by international peer-review panels. Results of experiments published and open.
- Mission-Based Access Thematic research granted on the basis of scientific missions pursuing challenges. Proposals reviewed by international panels. Results published and open.
- Proprietary Access Paid access for industrial or other users.
 Results are retained by the user, consistent with ELI ERIC's Data and IPR Policy.

Calls for Users

User Portal: https://up.eli-laser.eu/

Thank you for your attention!

