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Why ultrafast dynamics?

(photo-induced) dynamics of the electronic (and phonon) system of materials for
understanding and improving of:

fundamental understanding

application in ultra-fast devices

lightning and optical data transport and processing

opto-electro-magnetic coupling and switching

solar energy harvesting

for these applications, knowledge is needed of:

» band structure as well as (joint) density of states and transition matrix elements as
function of excited charge carriers

» excitation, relaxation, scattering, tunnelling and recombination dynamics
» mechanism which can lead to loss or trapping of excited charge carriers

— time resolved studies — here for example of the dielectric function dynamics after
laser excitation
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Ultrafast processes

fundamental physics understanding
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Today | will tell the tale of charge carriers,
who was sent to a journey through energy and momentum space
after being hit by a strong laser pulse.

We have observed their fate by
fs-time resolved spectroscopic pump-probe ellipsometry
and understood it (tried to) by fundamental theory.

What happens to the charge carriers under absorption of light?
What is their dynamics?

Where do they go to?
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Review of ARTICLE main work in
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Method

Data analysis

Carola, Mateusz, Noah, Oliver, Shirly, Stefan, Steffen

we model data for each At = 7 to obtain the complex DF &(7)
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Data analysis
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Method

Data analysis
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GaP Band Structure

wf Andre,

Method | Noah

Compare to fundamental theory

band structure and DF by ground-state plane-wave
density functional theory:
transition probability (rate): -1
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The tale of electrons

Today | will tell the tale of charge carriers,
who was sent to a journey through energy and momentum space
after being hit by a strong laser pulse.

We have observed their fate by
fs-time resolved spectroscopic pump-probe ellipsometry
and understood it (tried to) by fundamental theory.

What happens to the charge carriers under absorption of light?
What is their dynamics?

Where do they go to?

let's go through the story —in the world of
optoelectronic (Si, Ge, InP, GaP, ZnO) materials
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The tale of electrons

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB

— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective
energies

— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies

— when the material exhibits excitons: they are screened by the excited carriers, but may also form so-
called Mahan excitons — energy redshift and absorption bleaching

— collective free charge carrier oscillations (Drude)

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several pm
— phonons oscillate coherently

finally, the system relaxes back to equilibrium either due to radiative or non-radiative carrier recombination
within, depending on the material, some tens of ps (e.g. ZnO) or up to several ns (e.g. GaP)
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André, Carola, Noah, Oliver, Shirly, Stefan, Steffen

The tale of electrons — Excitation

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands

depending on material and photon energy,
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Noah

The tale of electrons — Excitation

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB by AEggr

scattering into entire Brillouin zone within energy range AEqxcitation + AEBGR

example GaP: we obtain AEggg from time evolution of E; of the TcL describing blocking at T’
in the graph the energy difference of the lowest CB to the uppermost VBs is displayed
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The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB
— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective

energies
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André, Oliver, Steffen

The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin
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carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
band gap renormalization (BGR) — redshift of transition energies between VB and CB
transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective

1.: intra-VB transition near I' (electrons: lower VB to topmost VB; holes: lowest to higher hole bands)

r A Carrier distribution
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Noah
The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB

— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective
energies

— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies

1.: intra-VB transition near I' (electrons: lower VB to topmost VB; holes: lowest to higher hole bands)
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Noah
The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB

— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective
energies
— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies
2.: intra-CB transitions along L (hot electrons from lowest CB to higher conduction bands)
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Noah

The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB
— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective

energies

— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies

2.: intra-CB transitions along L (hot electrons from lowest CB to higher conduction bands)
... and to higher bands (outside spectral range) expressed by positive pole
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André, Oliver, Steffen

The tale of electrons — Excitation and shortly after

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB
— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective

energies

— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies

— when the material exhibits excitons: they are screened by the excited carriers, but may also form so-

called Mahan excitons — energy redshift and absorption bleaching
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The tale of electrons

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
band gap renormalization (BGR) — redshift of transition energies between VB and CB

%
%
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%

_)

transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective

energies

excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB

transitions — increase of absorption at the respective energies

when the material exhibits excitons: they are screened by the excited carriers, but may also form so-
called Mahan excitons — energy redshift and absorption bleaching

— collective free charge carrier oscillations (Drude) — electron and hole lakes in CB and VB
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The tale of electrons —in the following ps

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several ym
— phonons oscillate coherently

finally, the system relaxes back to equilibrium either due to radiative or non-radiative carrier recombination
within, depending on the material, some tens of ps (e.g. ZnO) or up to several ns (e.g. GaP)
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André, Ca_rola, Noah, Oliver, Shirl}l, Stefan, Steffen
The tale of electrons —in the following ps

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies

— relaxation to band minima — redshift of the Pauli blocked absorption features and recovery of high-
energy absorption

i
!
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4.65 eV

Ge GaP
1.55eV 3.1leV | .~
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os} \/
, 30k
3.3 3.5 25F 3
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fro S 15F 3
7\’ § 10F 3
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v 05| 1
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André, Oliver, Steffen

The tale of electrons —in the following ps

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):

— energy dissipation as heat — redshift of transition energies 29 9 @
— relaxation to band minima — redshift of the Pauli blocked absorption features ® e %9
. . @e‘e @
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes) 6@ o@
electron thermalization slowed down by hot-phonon effect: 0.5~ ™o @ ? o ! e
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Oliver, Marcus, Theo

The tale of electrons —in the following ps

— hot electrons can propagate ballistically over several ym

Wavelength (nm) 0 ps 0.1 ps 0.4 ps 0.8 ps 2ps
1000 800 600 400 Ae, 0
6 e T T v i 20 d
5L Time delays [ps] 2 = ; ekl ) 03
0.1 1.0 5.0 o 20 ‘ : ; , ' '
_____ > ; | 2l b v
5 4 e O ' ' -0.6
- 3 [ O 8 -20
@w Q . o . € 0.3
2t imaging spectroscopic 1,3‘: 20 -
1k ellipsometry ellipsometry é’ d = -
] S N o _— | 3 o0
15 2.0 2.5 3.0 35 7 0.1
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-2
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20 0 20 20 0 20 20 O 20 20 O 20 20 0 20
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€ -30 I
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—» combined effect of carrier cooling and fast carrier transport; effective diffusion coefficient 1.1 x 10* cm*/;
— ring structure: can be explained by a random-walk model including ballistic transport due to the thermal
gradient induced by the hot-phonon effect (speed several 10> m/s, electron by 2.5 times faster than holes)

TECHNISCHE UNIVERSITAT
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Appl. Phys. Lett. 115, 212103 (2019)
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Carola, Stefan

The tale of electrons —in the following ps

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several um
N

. s (a)
phonons oscillate coherently %
x
X 0
o
g - E
. S| GaP
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close to the surface of the material. 0 10 20 30
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ar or Si 1
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=
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= = > z I RS SRS I R AR R
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K. Ishioka, V. Rustagi, U. Hofer, H. Petek, and C. J. Stanton, Phys. Rev. B 95, 035205 (2017). time (ps)
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Noah, Younes

Long-lasting coherent phonon
oscillations in Gallium Phosphide

time-delayed spectra recorded in various windows with different time steps from 0.1 to 500ps distributed in the full time range up to 4500ps
examples for A(e,)-spectra for some windows:

2

z [

S E 1
£ 3
@©

= ¢
3 3 g
| f :
Q

[— ...—: all time windows|
0.001 0.01
Frequency
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Long-lasting coherent phonon
oscillations in Gallium Phosphide

= yields a large bunch of frequencies:

« allow only those who have at least 3 data points (step
width) per period and 3 periods per window

« averaging of frequencies bunching together

« interferences of probe-light within a cavity, where one
mirror is formed by the propagating sound wave
(density wave) — varying cavity length in time

12

* related sound velocity according: T =-=
v 2nvg

Noah, Younes
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André, Oliver, Steffen

The tale of electrons —long-time story

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several ym
— phonons oscillate coherently

finally, the system relaxes back to equilibrium either due to radiative or non-radiative carrier recombination
within, depending on the material, some tens of ps (e.g. ZnO) or up to several ns (e.g. GaP)

I v 1 v I v 1 v 1 ' 1 v I v 1 . . . .
Zn0O : , : fast radiative recombination
4.65 eV Time delay At [ps] 4 6.0 A .. .
. T, p—— 2000 s (emission dynamics:
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——02---5 | {45
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L0 e e e S
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2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 E o
0.5 Photon energy (eV) 7 g Jmnﬂ '
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Noah

The tale of electrons —long-time story

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several ym
— phonons oscillate coherently

finally, the system relaxes back to equilibrium either due to radiative or non-radiative carrier recombination
within, depending on the material, some tens of ps (e.g. ZnO) or up to several ns (e.g. GaP)

GaP total Ae,
3.1eVv

0

. | ¢ — additional total oscillator strength due
to intra-CB transitions peaks at around
20...40 ps

— no complete recovery after 4 ns (next
pump only after 1 ms)
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The tale of electrons
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The tale of electrons

exciting with high-intense laser beam: electrons and holes occupy formerly “empty” conduction (CB) and
valence (VB) band states — hot charge carriers with temperatures up to several thousands of Kelvin

— carriers spread within the entire Brillouin zone (BZ) to energetically matching bands
— band gap renormalization (BGR) — redshift of transition energies between VB and CB

— transitions between now occupied states are Pauli-blocked — reduction of absorption at the respective
energies

— excess electrons and holes can be excited by the probe light — arising of new intra VB and/or intra CB
transitions — increase of absorption at the respective energies

— when the material exhibits excitons: they are screened by the excited carriers, but may also form so-
called Mahan excitons — energy redshift and absorption bleaching

— collective free charge carrier oscillations (Drude)

in the following time (sub-ps ... ps), excited carriers scatter amongst each other and with the lattice (phonons):
— energy dissipation as heat — redshift of transition energies
— relaxation to band minima — redshift of the Pauli blocked absorption features
— formation of hot-electron—hot-phonon states (hot exciton-phonon complexes)
— hot electrons can propagate ballistically over several pm
— phonons oscillate coherently

finally, the system relaxes back to equilibrium either due to radiative or non-radiative carrier recombination
within, depending on the material, some tens of ps (e.g. ZnO) or up to several ns (e.g. GaP)
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André, Carola, Marcus, | o=

Mateusz, Noah, Oliver,
SU mm ary Shirly, Stefan, Steffen,

Pump-probe fs-TSE Theo, Younes gk

 method recently developed by us
 time evolution of the full complex dielectric function
 already applied to several material systems

o intra-band transitions (VB-VB and CB-CB)

o hot-phonon scattering

o ballistic carrier propagation

o transient birefringence changes

o coherent acoustic phonon oscillations

o spectral weight transfer
g
1kHz
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Femtosecond-time-resolved imaging of the
Summ ary dielectric function of ZnO in the visible to
near-IR spectral range @
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Thank You for Attention!

and thanks to all those who were also strongly involved in development of TSE method
and physical understanding of processes: (alphabetically)

J. Andreasson, C. Emminger, S. Espinoza, D. Franta, O. Herrfurth, K. Hingerl, A. Horn,
M. Kloz, J. Leveillee, M. Olbrich, T. Pflug, M. Rebarz, S. Richter, E. Runge, A. Schleife,
Y. Slimi, N. Stiehm, C. Sturm, S. Zollner, M. Zahradnik
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